2019 Update in Diagnosis and Management of Stroke

S. Andrew Josephson MD

Carmen Castro Franceschi and Gladyne K. Mitchell Neurohospitalist Distinguished Professor Chair, Department of Neurology Founder, Neurohospitalist Program University of California, San Francisco

The speaker has no disclosures

Case 1

- A 65 year-old right handed man with a history of HTN presented to the ED in a delayed fashion after the sudden onset of right sided weakness.
- Exam shows an expressive aphasia, R face and arm weakness as well as R visual field cut and L gaze deviation
- He was last seen normal at 1 p.m., and it is now 8:45 pm

UCSF "Stroke Protocol" CT

- Obtained at UCSF in suspected acute stroke and TIA patients hours from onset
- 1. Non-contrast CT of the head
- 2. CT Angiography from aortic arch to the top of the head
- 3. CT Perfusion study
- 4. Post-contrast CT of the head

What treatment should this patient likely receive?

- A. IV t-PA alone
- B. IV t-PA followed by embolectomy
- C. Embolectomy alone
- D. IV heparin
- E. Antiplatelets

The 2019 Acute Stroke Timeline

- Time of onset= last time seen normal
 0-4.5 Hours IV-tPA
 - 0-6 Hours Mechanical
 - Embolectomy for all
 - 6-24 Hours Mechanical

Embolectomy for some

Intravenous t-PA: Broad Success

	Alteplase	Control	Odds ratio			
	(n=3391)	(n=3365)	(95% CI)*			
Treatment delay						
≤30h	259/787 (32-9%)	176/762 (23.1%)	175 (1-35-2-27)			
>3-0#4-5h	485/1375 (35-3%)	432/1437 (30-1%)	1-26 (1-051-51)			
>4/5h	401/1229 (32-6%)	357/1166 (30-6%)	1.15 (0.95-1.40)			
Age (years)						
£80	990/2512 (39-4%)	853/2515 (33-9%)	1-25 (1-10-1-42)			
>80	155/879 (17-6%)	112/850 (13-2%)	1.56 (1.17-2.08)			
Baseline NIHSS score						
0-4	237/345 (68-7%)	189/321 (58-9%)	1-48 (1-07-2-06)			
5-10	611/1281 (47-7%)	538/1252 (43-0%)	1-22 (1-04-1-44)			
11-15	198/794 (24-9%)	1/5/808 (21-7%)	1-24 (0-98-1-58)			
16-21	77/662 (11-6%)	55/671 (8-2%)	1/50 (1/03-2/17)			
»22	22/309 (7-1%)	8/313 (2-6%)	3-25 (1-42-7-47)			
0-5 0-75 1 1-5 2 2-5 Alteplase worse Alteplase better						

Emberson, J et al: Lancet 2014

Speed Matters: Time is Brain

- Examination of the Get With the Guideline Registry in the U.S. over the last decade
 - 1400 hospitals, nearly 59,000 patients
 - Mean time to treatment was 144 minutes
 - Earlier on weekdays, more severe stroke, arrival in ambulance
- For every 15 min earlier administration...
 - Significantly lower in-house mortality
 - Significantly lower rates of ICH
 - Significantly more independent ambulation at d/c
 - Significantly higher rate of d/c to home

Saver J et al: JAMA 309:2480, 2013

The 2015 Endovascular Revolution

- Five major positive trials of endovascular therapy all published in 2015 in NEJM
- Trial design somewhat differed, but common to each:
 - 1. Used newer-generation devices
 - 2. Selected patients who were eligible via CTA
 - 3. IV t-PA in those who were eligible followed by embolectomy
 - 4. Typically a 6 hour time window

The 2018 Second Revolution

- DAWN and DEFUSE3 Trials
- Select patients with LVO treated up to 24 hours based on CT perfusion selection

 Automated CT software widely available
- Has led to major reexamination of triage and ED/hospital protocols

Nogueira R et al: *N Engl J Med* 378:11, 2018 Albers GW, et al: *N Engl J Med* 378:708, 2018

What do we do given this data?

- 1. All patients eligible for IV t-PA should receive it (quickly)
- 2. Patients within 6 hours should receive a CTA to look for a large vessel occlusion (LVO)
- 3. If LVO present, endovascular therapy should occur, even following IV t-PA regardless of perfusion data

What do we do given this data?

- 4. If the patient has a LVO and presents between 6-24 hours, CT perfusion is required and selects patients who should receive endovascular therapy
- 5. Consider IV tPA for some outside of the 4.5 hour window with MRI selection

Wait!

What about tPA Out of the Window?

- A substantial number of patients wake up with a stroke or they can't tell us their time of onset
- Some will have had a stroke in the last few hours and therefore IV tPA may work
- Important positive trials used either MRI to select these patients (+DWI but –FLAIR) or CT/MR perfusion imaging
- Prime time?

Thomalla et al: *N Engl J Med* 379:611, 2018 Ma et al: *N Engl J Med* 380:1795, 2019

Case 2

- A 65 year-old man with a history of HTN presents with 3 days of R arm weakness
- Examination shows a R pronator drift and mild weakness in the extensors of the R hand and arm
- The patient takes aspirin 81mg daily as well as HCTZ

Which of the following is not part of the standard embolic stroke workup?

- A. Echocardiogram
- B. Extended cardiac telemetry
- C. Lipid panel
- D. B12, TSH, RPR, ESR
- E. Carotid evaluation

Standard Large-Vessel Stroke Workup

- Cardioembolic: afib, clot in heart, paradoxical embolus
 - 1. Telemetry
 - 2. TEE with bubble study
- Aortic Arch
 - 2. TEE with bubble study
- Carotids
 - 3. Carotid Imaging (CTA, US, MRA, angio)
- Intracranial Vessels
 - 4. Intracranial Imaging (CTA, MRA, angio)

And evaluate stroke risk factors

TEE vs. TTE

- 231 consecutive TIA and stroke patients of unknown etiology underwent TTE and TEE
- 127 found to have a cardiac cause of emboli, 90 of which (71 percent) only seen on TEE
- TEE superior to TTE for: LA appendage, R to L shunt, examination of aortic arch
- More recently: TEE found additional findings in 52% and changed management in 10%

De Bruijn S et al: *Stroke* 37:2531, 2006 Katsanos AH, et al: *Neurology* 87:988, 2016 Atrial Fibrillation Detection

- EKG
- 48 Hours of Telemetry
- Long-term cardiac event monitor (>21d)
 - 15-20% of patients with cryptogenic stroke otherwise unexplained had afib detected
 - Clearly changes management
 - Probably cost effective

Antiplatelets

Shrinking Indications for Anticoagulation in Stroke

- 1. Atrial Fibrillation
- 2. Some other cardioembolic sources
 - Thrombus seen in heart
 - ?EF<35 WARCEF 2012
 - PFO with associated Atrial Septal Aneurysm
- Vertebral or Carotid dissection CADISS 2015
 Rare hypercoagulable states: APLS

The "Absolute Mess" of PFO in Stroke

Meier B and Lock JE Circulation. 107:5, 2003

- Around 20-25% of all patients have a PFO
- PFO alone is not necessarily associated with higher risk of recurrent stroke
 - Higher risk: Larger PFO, associated atrial septal aneurysm, perhaps younger age
- Three previous *negative* trials of closure devices <u>but</u> cardiologists pre-2017 were still performing these procedures widely

More Actionable Data

	RESPECT	Gore REDUCE	CLOSE
Inclusion Criteria	Cryptogenic stroke within past 270 days + PFO	Cryptogenic stroke within past 180 days + PFO	Stroke attributed to PFO + atrial septal aneurysm OR large PFO
Participants	980 participants	644 participants	663 participants
Intervention Arm	PFO closure	PFO closure + antiplatelet	PFO closure + antiplatelet
Medical Rx Arm	Antiplatelet or anticoagulation	Antiplatelet	Arm 1: antiplatelet Arm 2: anticoagulation
Results	Less recurrent stroke with PFO closure (NNT 42)	Less recurrent clinical and clinical+radiographic stroke with PFO closure (NNT 28)	Less recurrent stroke with PFO closure (NNT 20)

N Engl J Med, 2017

What now? "Let's close all these PFOs!"

- DO NOT close all these PFOs
- DO screen patients for PFO (?how)
- It is sensible to discuss with your cardiologists some "Rules of the Road"
- At the end of the day, this is an exciting advance for some (young) people with stroke that can make a substantial impact on recurrence rates

Rules of the Road

- Consider PFO closure if:
 - The patient is younger than 60 years old
 - AND you can be sure the PFO is the most likely etiology after a thorough workup
 - AND the qualifying event is a stroke (not TIA) that appears embolic (not lacunar)
 - Likely concentrate on large PFOs or those with an atrial septal defect
 - Cardiologists new task: start counting bubbles

Risks to Discuss With Your Patients

- Atrial Fibrillation rates higher
- No great data beyond 5-10 years
- Antiplatelet regimens variable but most include duals for some time and then monotherapy
 - And what if AF develops?
- Major risk for stroke is up front rather than spread throughout subsequent years
- Medical management: Options appear equal

Heparin in Acute Stroke

- Study examined the largest trials of heparin, heparinoids, LMWH in acute stroke
- Could find no benefit even in those patients with highest risk of recurrent ischemia and lowest risk of hemorrhage
- Considering use of heparin for "selected patients" therefore seems unwise

Whiteley WN et al: Lancet Neurol 12:539, 2013

Case 3

- A 70 year-old woman with a history of DM, smoking presents 10 hours after the onset of slurred speech and right arm and leg weakness.
- The patient is taking ASA 81mg daily

Stroke workup is unrevealing. your Treatment?

- A. Increase ASA to 325mg daily
- B. Add Plavix to ASA
- C. Stop ASA, start Plavix
- D. Stop ASA, start Aggrenox
- E. Anticoagulate

Antiplatelet Options

- 1. ASA
 - 50mg to 1.5g equal efficacy long-term
- 2. Aggrenox
 - 25mg ASA/200mg ER Dipyridamole
- 3. Clopidogrel (Plavix)

 Multiple secondary prevention studies (CHARISMA, SPS3) show <u>no</u> long-term benefit in combination with ASA

Antiplatelet Options

- If on no antiplatelet medication
 Plavix vs. Aggrenox (or ASA)
- If already on ASA
- I all catly of ASA
 - Switch to Plavix vs. Aggrenox
- If already on Plavix or Aggrenox
 -???

Clopidogrel + ASA: Ever A Winning Combination?

- POINT trial
- Select those with only minor or no deficits (NIHSS 3 or less or ABCD2 of 4 or more)
- Nearly 5000 TIA or Minor Stroke patients assigned to 90d of daily ASA + Placebo versus daily ASA + Clopidogrel following 600mg load
- Modestly improved efficacy (1.5%)
- Minimally (0.5%) more hemorrhage

Johnston SC et al: N Engl J Med 379:215, 2018

When to use Dual Antiplatelets

- NOT all the time!
- After minor stroke or TIA for only 21* days
- After a fresh carotid or coronary stent
- With severe intracranial atherosclerosis (>70%) and stroke/TIA in that territory for only 90 days

Other Acute Stroke Management

- Statins for (almost) all patients with stroke or TIA
 80mg atorvastatin if LDL>100 for at least 5 years
- Tight Glucose and Fever control in acute period
- Enoxaparin for DVT prophylaxis (better than compression stockings or UFH)

Permissive Hypertension

- National Guidelines
 - To at least 220/120
 - After IV tPA: less than 185 systolic for 24 hours
- We typically stop all meds except half-dose β-blockers and (maybe) clonidine

Permissive Hypertension

- When to stop remains controversial
- Situations where more important
 - Large Vessel Occlusion
 - Fluctuating symptoms
- We begin a medicine before discharge (~72h) and aim for normotension over a matter of weeks
 - Choose thiazides and ACEI first

Case 4

- A 73 year-old woman with HTN comes to the ED after a 5 minute episode of right arm weakness that has since resolved.
- Exam is normal except blood pressure is elevated at 176/97

Other than TIA, what is the most common neurologic diagnosis here?

- A. Conversion disorder
- B. Migraine
- C. Focal Seizure
- D. UTI
- E. Cervical spine lesion

TIA versus Stroke

- Up to 30-50% of TIA have infarct on MRI
- Conceptually the same disorder
 Same workup, same treatment
- Pendulum swing
 - Pre-2001: Much more aggressive with stroke
 - 2002-2007: TIA and stroke equally aggressive
 - 2008-present: A more aggressive approach with TIA outside of the acute treatment window

Risk of Future Stroke with TIA: ABCD² Score

- 7-day risk overall 8.6-10.5 percent
- <u>Age</u>
 - >60 =1 point
- <u>B</u>lood Pressure
 - SBP>140 or DBP>90 =1 point
- <u>Clinical Features</u>
 - Unilateral weakness =2 points
 - Speech disturbance without weakness =1 point
- <u>D</u>uration
 - ->60 minutes =2 points
 - -10-59 minutes =1 point
- <u>D</u>iabetes=1 point

Johnston SC et al: Lancet 369:283, 2007

Aggressive Therapy for TIA

- 1. SOS-TIA trial
 - 1085 patients with TIA admitted to a 24-hour center
 - All treated with standard therapy
 - 74 percent discharged on same day, stroke risk reduced 80 percent from ABCD² prediction
- 2. EXPRESS study
 - 80 percent reduction in risk with urgent TIA clinic visit versus usual primary care visit in 1278 patients

Lavallee PC et al: *Lancet Neurology* 6:953, 2007 Rothwell PM et al: *Lancet* 370:1432, 2007

TIA Aggressive Therapy: A Modern Look

- 2009-2011 TIA registry of nearly 5000 patients
- Population at baseline was high risk as with historical cohorts
- 78% saw a stroke specialist within 24 hours
 Hospitalists not mentioned in this European study
- 1-year stroke rate was 5.1%
- Rates at 2d, 7d, 30d, 90d, 1y were all less than half of that in historical cohorts

When to Fix the Carotid?

- NASCET in early 1990s
 - Benefit of endarterectomy in patients with symptoms ipsilateral to 70-99% stenosis
 - Comparison: best medical management at the time
 - 50-69% symptomatic stenosis revascularization has limited benefit, especially in women
- In stroke management don't miss carotid disease or atrial fibrillation

How to Fix the Carotid?

- Stenting vs. CEA: CREST Trial
- 4-year study of 1321 symptomatic and 1181 asymptomatic patients randomized to CEA vs. carotid stenting
- Combined endpoint of stroke, MI, death not significantly different
 - More strokes in first 90 days in stenting group, more MIs in surgical group
 - After 90 days, similar endpoints

Result confirmed over 5 years in a 2015 trial

Brott TG et al: *N Engl J Med* 2010 Bonati LH et al: *Lancet* 2015